基于双电层理论的光催化反应动力学模型Ⅱ. TiO_2表面甲基橙吸附的红外光谱表征

基于双电层理论的光催化反应动力学模型Ⅱ. TiO_2表面甲基橙吸附的红外光谱表征

一、Photocatalytic reaction kinetics model based on electrical double layer theoryⅡ. Infrared spectroscopic characterization of methyl orange adsorption on TiO_2 surface(论文文献综述)

JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[1](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中指出Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.

Weiqi Qian,Suwen Xu,Xiaoming Zhang,Chuanbo Li,Weiyou Yang,Chris R.Bowen,Ya Yang[2](2021)在《Di erences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges》文中研究表明Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century.Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials.This has led to significant interest in the exploitation of 2D nanomaterials for catalysis.There have been a variety of excellent reviews on 2D nanomaterials for catalysis,but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant.Here,we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials.Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted,which point out the differences and similarities of series issues for photocatalysis and electrocatalysis.In addition,2D nanocatalysts and their catalytic applications are discussed.Finally,opportunities,challenges and development directions for 2D nanocatalysts are described.The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.

王海梅[3](2021)在《可见光响应光电阳极的设计合成及其光电催化水分解性能研究》文中指出全球能源短缺和环境污染问题变得越来越严重,发展清洁和可再生能源至关重要。太阳能具有储量丰富、绿色和可持续的特点,开发和利用太阳能引起了越来越多的关注。但太阳能的波动性和间歇性使其难以直接替代用于工业和日常生活的化石燃料。将太阳能转换为氢(H2)能的光电催化(Photoelectrochemical,PEC)水分解是一种非常有前途的太阳能利用方法。通常,PEC系统由光电阳极、光电阴极和电解质组成。作为PEC系统的关键组成.部分,人们一直致力于开发高效、稳定、低成本的光电极,以实现10%以上的太阳能到氢能(Solar to hydrogen,STH)转换效率。光吸收效率、电荷传输效率以及界面电荷转移效率共同限制了光电催化水分解的整体性能。目前研究的光电催化材料仍然面临光吸收效率低、电荷复合严重和反应动力学缓慢等问题。为了实现良好的光吸收,选择具有可见光响应的半导体材料作为研究对象,并通过晶面调控、掺杂、构建异质结等多种优化策略进行材料改性,实现高效稳定的光电催化水分解是该领域的研究热点。1、基于表面缺陷态调控增强金属硫化物基光电阳极光电催化水分解性能金属硫化物具有合适的带隙、可调控的化学组成和形貌、丰富的活性位点,被广泛应用于光催化、电催化、光敏元件和光电探测器等领域。首先,我们合成了结构稳定且中心金属d电子易于调控的三元金属硫化物CdIn2S4,然后通过简单的还原性气氛处理成功在CdIn2S4表面引入硫空位,通过电子顺磁谱及球差电镜表征确认了表面硫空位的存在。光电催化水分解性能测试表明具有硫空位的CdIn2S4光电阳极在1.23 V vs.RHE的外置偏压和模拟太阳光下,获得了5.73 mA cm-2的光电流密度,是目前报道的金属硫化物基单光子吸收体的最大值。同时,我们系统地研究了硫空位对电荷转移动力学和光电催化性能的影响。我们的研究证明,表面硫空位除能有效提高界面载流子浓度、增大光电阳极/电解质能带弯曲外,还可以有效调控CdIn2S4光电阳极上的表面态分布,这也是所制备材料具有高效光电催化性能的原因。2、基于表面态调控增强CdIn2S4/InOx/NiFe-LDH复合光电阳光电催化性能CdIn2S4光电阳极的本征光生电荷分离效率和表面水氧化反应速率较低,使得材料的光电转换效率低。此外,金属硫化物因光生空穴的表面积累而易发生自身氧化光腐蚀,使其界面结构不稳定。单一的材料存在固有的缺陷,设计高质量的复合界面结构对于高性能光电催化水分解至关重要。在这里,我们以作为主体光吸收材料,通过原子层沉积(ALD)超薄的InOx钝化层作为空穴隧穿载体,然后沉积助催化剂NiFe层状双金属氢氧化物(LDH)纳米片阵列,构建良好接触的界面结构,以实现出色的PEC水氧化。在复合结构中,ALD超薄的InOx保护层使CdIn2S4与电解液物理隔离减少光腐蚀,并且InOx具有高的空穴提取能力,与电沉积的NiFe-LDH结合牢固,可促进空穴从CdIn2S4到NiFe-LDH活性催化界面的转移。此外,NiFe-LDH不仅可以高效的传输空穴和降低OER反应(Oxygen Evolution Reaction)动力学过电位,而且可以调控表面态分布增加表面态浓度以加速表面OER反应速率。CdIn2S4/InOx/NiFe-LDH复合光电阳极在1.23 V vs.RHE电位下的光电流达到5.47 mA cm-2,而且在不添加牺牲剂的体系中可具有较好的光电催化稳定性。通过修饰钝化层与OER助催化剂层,不仅在CdIn2S4光电阳极中建立了良好的界面结构,降低了电荷重组,而且调控了界面载流子的分布,实现了高浓度载流子的有效且快速地参与表面水氧化反应。3、基于界面耦合效应增强TaON/Au/ZnCo-LDH复合光电阳极的电荷传输以及光电催化性能界面异质结构的合理设计和构建,可以同时加速光生载流子的分离并增强表面水的氧化动力学,对于光电催化水氧化非常必要。我们通过将肖特基异质结和半导体/水氧化助催化剂(Semiconductor/Water Oxidation Cocatalysts,SC/WOC)结引入TaON光催化剂来增强PEC水氧化的性能。与原始TaON光电阳极相比,TaON/Au/ZnCo-LDH(Layered Double Hydroxide,LDH)光电阳极的起始电位负移156 mV,在1.23 V vs.RHE时光电流密度提高了 17.3倍,并且改善了其光电催化稳定性。通过研究TaON/Au/ZnCo-LDH光电阳极性能提高的机理,发现PEC性能的增强不受表面电化学水氧化动力学的限制,主要归因于电荷分离和转移的改善,这表明了 Au和ZnCo-LDH的协同作用。根据能带匹配原理,Au作为电荷传输载体,实现电子向TaON转移并流向对电极,而空穴在ZnCo-LDH上积累实现有效的空间电荷分离,这有助于提高PEC的水氧化性能。这部分研究工作表明了 PEC水氧化中界面异质结的重要性,并阐明了其机理,可为设计和制备新型结构光电阳极提供有效的方法。

Sumbal Farid[4](2020)在《氧化钴/碳基材料析氧电催化剂的设计和可控合成》文中研究表明由于地球化石燃料消耗的不断增加和环境污染问题的日益加剧,发展清洁的可再生能源具有巨大的重要性。氢能可以作为一种清洁和理想的非化石燃料的替代能源,因此研究和开发水解离制氢技术具有十分广阔的应用前景。然而,电化学水解离反应中的阳极半反应即析氧反应(OER)由于动力学反应缓慢和存在高的过电势,严重地限制了电化学水解制氢方法的广泛应用。针对目前OER电催化剂活性及使用寿命还没有达到动力学和热力学的要求,特别是,碱性条件下电催化剂导电性低和稳定性差,开发反应活性高、稳定性高及价格低廉、环境友好的新型电催化剂材料已成为当前研究的重点。目前,氮掺杂碳负载氧化钴(Co3O4/N-C)复合材料是OER催化活性和稳定性表现最为理想的非贵金属电催化剂之一。为进一步提高该催化剂的OER催化活性和稳定性,在本研究中,采用了以下两种思路:(一)掺杂和催化剂-载体效应的动力学控制设法提高催化剂的固有活性;(二)根据已有的合成技术通过采用纳米结构和多孔材料控制催化剂的形貌达到优化催化剂的表面,构建Co3O4纳米颗粒原位生成在氮掺杂的碳材料表面。具体研究内容如下:采用溶剂热合成钴-吡唑微米球,将微球焙烧获得N-C包覆的大小均匀的Co3O4纳米颗粒(Co3O4/N-C)。在1.0M KOH碱性溶液中,Co3O4/N-C的OER性能表现为:低的起始电位(~1.52 V vs RHE)、非常小的Tafel斜率(44 mV dec-1)以及10 mA cm-2时对应的超电势390 mV。优异的OER催化性能归因于Co3O4原位引入到碳载体中,利于电荷传输和传递、(具有)高的结构稳定性。合成了分别由ZIF-67衍生的Co3O4纳米颗粒和由聚吡咯(PPy)获得的含N碳纳米管(N-CNTs)、具有相互联通的三维结构的Co3O4/N-CNTs催化剂。Co3O4/N-CNTs中,Co3O4颗粒束缚在高导电性的N-CNTs上,这样不仅赋予Co3O4/N-CNTs高的活性表面积,和增强Co3O4之间的电荷传递,也防止Co3O4颗粒聚集。Co3O4/N-CNTs的OER性能表现为:低的起始电位(~1.37 V vs RHE)、10 mA cm-2时对应的超电势200 mV以及非常小的Tafel斜率(40 mV dec-1)。合成了具有三维结构的花状PPy以获得含氮的碳材料(N-C),并进一步采用溶剂热方法在N-C表面生长Co3O4颗粒。得益于三维花朵状多孔N-C,Co3O4/N-C具有非常大的比表面积以满足提供更多的电化学活性位点。实际上,在电化学过程中氮-碳材料能够通过减缓Co3O4的结构倒塌趋势大幅度增加Co304的稳定性,也可以补偿它们的弱的传导能力。Co3O4/N-C独特的结构使其在OER反应中表现出优异性能,即低的起始电位(~1.31V vs RHE)、10 mA cm-2时对应的超电势120 mV以及非常小的Tafel斜率(33 mV dec-1)。据上述,本论文研究了基于贵金属替代的用于OER的非贵金属电催化剂Co3O4/N-C。本工作为获得成本低廉、无毒害、高效并具有优异的形貌和性能(多孔的结构、高导电和高稳定性)的理想电催化剂,和(将它们)应用在水氧化和全面开发绿色环保的水氧化相关技术研究提供了引领作用。本工作也为合成和优化其他的过渡金属基水氧化催化剂开辟了新的思路。

Muhammad Zaheer Afzal[5](2020)在《生物炭基材料对水溶液中环丙沙星的去除效能及机制解析》文中进行了进一步梳理不同药物的大量生产和使用,特别是环丙沙星,因其致命性,对环境构成了严重威胁。由于这些药物代谢不全,使其存在于水生环境中。因此,它引起了科学界的关注。用于处理水的各种材料,如石墨烯、生物炭、碳纳米管、粘土矿物和蒙莫里龙石等。生物炭从废物生物量中获得,在改变环境补救方面起着至关重要的作用,如提高土壤肥力、减缓气候变化和水处理等为了利用生物炭的多功能性,本文研究了在450℃温度下通过热解产生的不同生物炭基材料的应用,通过应用吸附、声催化降解和膜过滤等不同技术从水中去除丙烯酸.吸附技术中,使用两种基于生物炭的吸附剂来去除丙叶沙辛,通过在不同的条件下(如不同pH,不同温度,不同的时间间隔和不同的电解质)进行不同的吸附实验来测量其吸附能力。因此,评估了不同的动力学和吸附等温线模型及机理。为了对环丙沙星进行声催化降解,将超声辐射应用于基于生物炭的新型声催化剂,该超声也用于吸附目的。为了确认成功降解,与中间产品一起检测出活性氧种(ROS),该物质负责降解有机物。膜过滤与其他净水技术相比具有多种优点。主要原因是多功能生物炭也建在聚合物网络的膜中。制备的膜经过不同的表征分析,经鉴定效果良好,以最少的结垢去除丙叶沙林。最后,所有生物炭基材料均成功再生,并取得了良好的重复去除西普罗莫西辛的效果。研究的主要结论如下.粉末形式的生物炭,很难在吸附后再次从水溶液中恢复。为了克服这个问题,它被封装在聚合网络chitosan中,以珠子的形式成型,在再生后易于分离和重复使用。此外,生物炭还与腐殖酸结合,通过在气酸封装之前加入腐殖酸功能组来增强其吸附能力.吸附前后的两种吸附剂的特性均采用扫描电子显微镜(SEM)、X射线光电子光谱(XPS)、傅立叶变换红外(FTIR)等不同仪器技术进行。在这两种情况下,吸附遵循伪二阶动力学模型和朗缪尔吸附等法模型.此外,在吸附系统中增加了不同的电解质,如NaCl、Na2SO4、NaN03和Na3PO4,在两种情况下对吸附效果相似。吸附机制相似,包括氢键、疏水界面和+电子受体供体(EDA)相互作用.然而,与单独包封在壳聚糖中的仅由生物炭制成的珠子(36.72 mg/g)相比,由掺有腐殖酸的生物炭制成的珠子(155.26 mg/g)的吸附更显着和更快。两种吸附剂都易于再生,在反复循环中表现出良好的吸附行为,从而显示出长期高效运行的潜力.对于声催化降解,为了进行声催化降解,在包埋在壳聚糖中之前,使用众所周知的溶胶-凝胶法将二氧化钛(TiO2)掺入生物炭表面,使用超声波以制备用于降解环丙沙星的催化剂,钛-生物炭/壳聚糖水凝胶珠(TBCB)。SEM、能量分散X射线光谱(EDX)和FTIR等不同特性分析验证了声催化剂的有效生产.通过质谱光度计监测降解过程中不同中间产物的生成。XPS分析还通过显示一个新峰证实了环丙沙星的成功降解,这表明Ti 3+还原为Ti2+。通过添加淬灭剂(例如苯醌(BQ),三乙醇胺(TEA))来监测负责环丙沙星降解的活性氧(ROS)的生成,例如超氧自由基(·O2-),空穴(h+)和羟基(·OH)和异丙醇(IPA)。这些淬灭剂在ROS之上捕获,因此降低了降解效率。25分钟内,降解效率分别从85.23%降至81.50%(BQ)、74.27%(TEA)和61.77%。IPA。因此,上述讨论证明了声催化剂的成功生成及其降解丙沙星的能力.在不同的超声功率,电解质以及时间间隔下测量了降解效率。发现在初始浓度为10 ppm(85.23%)的情况下,超声功率为150 W时降解效率最高。此外,该催化剂本身也证明是环丙沙星的良好吸附剂,并通过拟一级动力学模型和Langmuir吸附等温模型吸附。为了进一步探索生物炭的多功能性,还通过将其以不同比例在聚醚砜(PES)和聚乙烯吡咯烷酮(PVP)中构建,用于制造膜分离水中的环丙沙星。当增加生物炭比时,环丙沙星的分离效率会提高。不同的表征测试,如SEM、FTIR、原子力显微镜(AFM)、XPS和接触角测量,支持了通过增加生物炭比提高膜质量,从而提高分离效率这一事实.生物炭和PES等比的膜M11与其他三种比例的膜材料相比,表现出最好的效果,如水通量(790.37 L/m2h),环丙沙星通量(595.54 L/m2h),孔隙率(68.9%),孔半径(266.96 nm)及环丙沙星去除效率(95.19%)M11对其他三种抗生素也显示出良好的效果,且易再生以持续使用。

黄岩[6](2020)在《实现选择脱除硫化氢与高效提取锂离子的印迹技术研究》文中研究指明印迹技术是一种制备具有“记忆效应”智能材料的新手段,所得到的印迹材料能够高效识别、选择分离目标物。分析印迹材料的发展及应用现状,发现虽然近年来在环境领域得到了广泛的关注和研究,发展日趋成熟,但是也存在着一些问题需要进一步探究,以推进其工业化应用的进程。关于常规的分子(离子)印迹材料,存在以下问题:1)材料的物理化学性能、印迹位点对目标物的识别、吸附机理等理论问题;2)在面对复杂的干扰环境,印迹材料对目标物能否保持良好的选择吸附能力;3)当前印迹材料的再生方式仍以酸洗或有机溶剂萃取为主,这些常用的再生方法易造成吸附位点的破坏及溶损,也会消耗大量的化学药剂,带来相应的环境污染等实践问题。此外,在气体分子印迹材料的制备中,由于气体分子自身性质不稳定,在聚合反应体系中不易控制,且溶解度低,不能直接作为模板分子,需要寻找合适的替代模板分子,从而限制了印迹技术在此领域的应用。目前的研究仅涉及到CO2、NO和部分VOCs气体,而工业气体成分复杂多样,如果能开发出新型气体分子印迹聚合物,使其在气体的灵敏检测和高效净化及转化中发挥价值,这对于工业生产和印迹技术的发展是一个有价值的研究方向。针对硫化氢污染与硫资源紧缺的现状,结合当前干法脱硫剂存在的一些客观问题如选择性差、硫容较小、不易再生、以及硫资源的转化与回收等,本文将印迹技术应用于此,开发出能高选择性地捕集硫化氢并实现其资源化转化的硫化氢气体分子印迹材料。这不仅有利于气体净化及有价值资源的回收,也拓宽了印迹技术的应用领域。此外,针对锂资源的市场需求及提取回收的现状,结合当前锂离子印迹材料存在的问题,开发了几种新型印迹材料,以促进对锂离子的提取与回收,采用新型、绿色的再生方法以避免再生过程中存在的污染问题,并结合热力学计算、动力学和吸附等温模型拟合等方法对吸附机理进行探讨分析,为工业化应用提供理论依据。具体研究内容包括以下四个方面:一、采用一步水热合成法,在Keggin结构磷钼酸(H3PMo12O40)中合成PMo12@Zr-MOFs(UiO-66)材料,以此为载体,水分子为硫化氢的替代模板分子,丙烯酰胺(AAM)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,过氧化苯甲酰和N,N-二甲基苯胺为引发剂,乙腈和乙酸乙酯为溶剂,通过表面印迹技术制备出具有核壳结构的PMo12@UiO-66@H2S-MIPs吸附材料。通过常温动态脱硫实验,考察了构筑硫化氢分子印迹聚合物(H2S-MIPs)相关因素对脱硫性能的影响,并获得其最佳制备条件:模板分子(H2O):功能单体(AAM):交联剂(EGDMA)的摩尔比为1:4:10,乙腈和乙酸乙酯的体积比为1:1,聚合反应时间为 24 h。通过 FT-IR、SEM、TEM 和 XRD 对 PMo12@UiO-66@H2S-MIPs进行表征,结果证明H2S-MIPs被成功负载到PMo12@UiO-66的表面,也展现出PMo12@UiO-66@H2S-MIPs 具有核壳结构。与 PMo12@UiO-66(载体)相比,PMo12@UiO-66@H2S-MIPs对硫化氢表现出更佳的去除能力,吸附量可达到24.05 mg/g。发现水蒸汽对PMo12@UiO-66@H2S-MIPs脱除硫化氢有促进作用,在C02的干扰下,该材料仍能保持对硫化氢高效吸附的状态,且硫化氢吸附量没有降低,表现出优异的H2S/C02选择分离性能。对于吸附后的PMo12@UiO-66@H2S-MIPs,选用180℃空气吹扫和常温臭氧处理对其进行再生,重复6次再生利用实验,其对硫化氢的吸附量仅降低了 11.5%。利用XPS和TGA对吸附前后的PMo12@UiO-66@H2S-MIPs进行表征,结果表明吸附后有硫单质的生成,说明硫化氢被成功转化成了硫资源,实现了硫化氢的资源化转化。对比PMo12@UiO-66@H2S-MIPs、PMo12@UiO-66 和 UiO-66@H2S-MIPs 的脱硫性能,并借助FT-IR、BET分析、XRD、XPS、ESR、TGA等表征手段,推断出PMo12@UiO-66@H2S-MIPs的选择脱硫机理为:硫化氢先被H2S-MIPs选择吸附,继而通过UiO-66的孔道扩散到吸附剂内部,然后在PMo12的氧化还原作用下,Mo6+被还原为Mo5+,硫化氢被氧化为单质硫,从而实现硫化氢的选择去除及资源化转化;使用后的吸附剂经180℃空气吹扫和常温臭氧处理,将Mo5+再氧化成Mo6+,实现其有效再生。因此,PMo12@UiO-66@H2S-MIPs具有优异的选择吸附性、再生及重复利用性,能有效摆脱干扰成分,有望应用于低浓度精细脱硫及硫磺回收的工业领域中。二、基于盐酸纯化处理的多壁碳纳米管(MWCNTs),分别以二苯并14冠4(DB14C4)和α-甲基丙烯酸(α-MAA)为螯合剂和功能单体,通过表面印迹技术合成出锂离子印迹聚合物(IIPs)。通过FT-IR、SEM及BET对IIPs的物理化学性能进行表征,结果表明印迹聚合物被负载到了 MWCNTs的表面,即IIPs被成功合成。考察温度及pH对吸附量的影响,发现在25℃、pH为6.0时,IIPs对锂离子吸附效果最佳,其最大吸附量为1362.56 μmol/g。通过动力学和吸附等温模型拟合,发现准一级动力学模型和Langmuir模型更符合IIPs对锂离子的吸附行为,在一定程度上说明了 IIPs的表面均匀,应属于单分子层吸附。以Na+、K+、Cu2+和Zn2+为干扰离子,研究IIPs的选择吸附性能,发现在复杂的吸附环境中仍能保持对锂离子的吸附优势,证明IIPs具有理想的选择吸附性能。选用1mol/L硝酸对吸附饱和的IIPs进行再生处理,重复10次吸附脱附实验后,锂离子吸附量仅下降了 10.3%,说明IIPs易再生且有良好的吸附稳定性。三、为获得廉价高效的印迹吸附剂,选用建材级蛭石为原料,结合硝酸蒸汽和超声波对其进行预处理,再以此为载体,通过表面印迹技术合成出廉价的锂离子印迹聚合物(IIPs)和非离子印迹聚合物(NIPs1和NIPs2)。考察硝酸蒸汽处理时间对吸附性能的影响,发现最佳处理时间为6 h。通过研究IIPs主要构筑元素的添加量对吸附性能的影响,确定出IIPs的最优合成条件:模板分子(LiNO3)、功能单体(α-MAA)和交联剂(EGDMA)的摩尔比为1:5:20,甲醇和N,N-二甲基甲酰胺的体积比为1:2。通过BET、FT-IR、SEM及XRD手段对所制材料进行表征,结果表明硝酸蒸汽和超声波联合处理可以提高蛭石的比表面积、剥离其片层结构,也证明在蛭石表面成功负载上了印迹聚合物而得到IIPs。在pH为7.0、温度为25℃的条件下,IIPs表现出最佳的吸附性能,其最佳吸附容量为2852.61μmol/g。根据锂离子吸附量随着温度升高而降低的实验结果,通过热力学计算发现,IIPs对锂离子的吸附过程是放热的,且能够自发进行。从吸附等温拟合结果来看,Langmuir模型能更好地描述IIPs的吸附行为,说明IIPs具有均匀的表面,应该为单分子层吸附模式。在Na+、K+和Mg2+干扰的情况下,相比于NIPs1和NIPs2,IIPs对锂离子的选择吸附能力更高。采用硝酸洗涤的方式对吸附饱和的IIPs进行再生处理,并考察其重复利用性能,发现经10次循环利用实验,吸附量仅下降13.1%,表明IIPs有稳定的吸附性能。四、在前期研究中,锂离子印迹聚合物均以酸洗的方式来实现再生利用,这种再生方式不仅需要消耗化学药剂,也会产生大量的酸性洗脱废液。为解决上述问题,提出一种绿色、易操作的再生方法,即通过光照来实现材料的再生。为此,设计了一种光敏型锂离子印迹聚合物(P-IIPs),以偶氮苯衍生物和DB14C4为功能单体,通过表面印迹技术在M-C3N4表面进行交联聚合反应而制得。利用FT-IR、BET、SEM、TEM及XRD等对所制材料进行表征分析,结果说明P-IIPs被成功合成。考察P-IIPs在紫外-可见光照射下的光控性能,发现紫外光照射促进P-IIPs解吸锂离子,而可见光照射有利于P-IIPs吸附锂离子,在紫外-可见光重复交替照射过程中,P-IIPs表现出交替解吸与吸附锂离子的行为,说明P-IIPs有光控性能。动力学结果表明,P-IIPs在可见光照射下比黑暗条件下的吸附速率更快,并且可见光下的吸附量明显优于黑暗条件下,进一步证明可见光能促进P-IIPs对锂离子的吸附。此外,准二级动力学模型更符合P-IIPs对锂离子的吸附过程,说明该吸附过程为化学吸附。通过考察温度的影响发现,随着温度升高,吸附量逐渐增大,50℃为最佳吸附温度,并且在50℃下,P-IIPs在可见光照射下比黑暗条件下对锂离子的吸附效果更好,说明热效应和可见光对P-IIPs吸附锂离子起到了协同促进作用。考察P-IIPs的吸附性能发现,在常温条件下,其吸附量可达到3280.5μmol/g,Langmuir模型能更好地拟合其等温吸附过程。通过测试选择性能发现,P-IIPs在Na+、K+和Mg2+存在的情况下能保持对锂离子的吸附优势,证明了其优异的选择吸附性。采用紫外光照射和超声波联合的方式对P-IIPs的再生性能进行探究,发现吸附饱和的P-IIPs的解吸量能达到90%,经5次重复利用,吸附量有轻微的降低。分析上述实验结果得出P-IIPs的选择吸附机理为:一方面,DB14C4具有与Li+离子直径相匹配的空腔,且附带有四个氧原子,从而使Li+可以进入其空腔内部,并与其中的氧结合形成稳定的配合物;另一方面,偶氮苯类物质在紫外-可见光照射下有光致异构现象,能进行可逆的顺式和反式异构体转化;因此,基于DB14C4和偶氮苯衍生物的P-IIPs对锂离子具有选择性能、光控吸附与解吸性能。

伍一洲[7](2020)在《类囊体启发光驱动NADH再生系统构建及性能强化》文中提出模拟自然界光合作用,将太阳能转化为化学能是化学和化工领域的“圣杯”研究之一。酶-光偶联人工光合系统将半导体材料光吸收能力和生物酶高活性、高特异性特点相结合,为“液态阳光”太阳能燃料的合成提供了一条绿色途径。辅酶烟酰胺腺嘌呤二核苷酸(NADH)作为“能量货币”参与了超过75%氧化还原酶催化反应,建立起光催化与酶催化间能量/质子传递的桥梁。高效、可控的NADH再生过程是实现太阳能到为化学能高效转化的关键。在绿色植物中,光合作用中合成NADPH(磷酸化形式NADH)的光反应主要发生在类囊体膜上。在类囊体膜上限域空间内,光反应中三个模块的竞争协调,即光系统Ⅰ/Ⅱ中的电子产生,电子传递链中的电子传递,以及铁氧还蛋白-NADP还原酶中的电子利用,最大程度优化了单一模块的可利用率,使光反应的全局量子效率接近理论值。受类囊体结构和功能启发,本研究对光催化NADH再生过程三个关键步骤,电子产生,电子传递和电子利用进行研究。通过协调电子产生-电子传递,多步电子传递,以及电子传递-电子利用,获得了功能模块合理分布的光催化剂,g-C3N4@α-Fe2O3/C,g-C3N4@C-P25和URh,实现了 NADH再生过程性能强化。并基于MOFs光催化剂,首次提出了光诱导配体到金属电荷传递机制。主要研究内容及结果如下:光催化NADH再生电子产生-电子传递间竞争协调。受类囊体膜中光系统Ⅱ启发,通过煅烧前驱体三聚氰胺@Fe3+/多酚,构建了 g-C3N4@α-Fe2O3/C核壳结构光催化剂。在光催化过程中,α-Fe2O3模块作为额外的光敏剂提供更多的光生电子,碳模块则促进了电子从α-Fe2O3到g-C3N4间的传递。通过调节α-Fe2O3和碳模块比例,实现了电子产生和电子传递的竞争协调,g-C3N4@α-Fe2O3/C的光电流密度相比纯氮化碳提升了 3.26倍。光催化辅酶再生收率达76.3%(1mM),初始反应速率为7.7 mmol h-1 g-1。将g-C3N4@α-Fe2O3/C与醇脱氢酶偶联,实现了甲醛到甲醇的连续合成。光催化NADH再生多步电子传递(电荷分离和电子运输)间竞争协调。受类囊体膜中电子传递链启发,利用一步法组装三聚氰胺@多酚-P25前驱体,煅烧后获得了 g-C3N4@C-P25三元光催化剂。在光催化过程中,在三聚氰胺表面预组装形成的多酚-P25涂层创造出更多的异质结界面,促进了电荷分离。同时,多酚转化形成的碳模块则提升了异质结界面处的电子运输效率。通过改变碳模块和P25模块比例和分布,实现了电荷分离和电子运输的竞争协调。与纯氮化碳相比,g-C3N4@C-P25电子传递效率提升4.5倍。光催化NADH再生收率达77.3%(1 mM),初始反应速率为2.77 mmol h-1 g-1。将光催化再生获得NADH用于酶催化丙醛转化为丙醇,再生NADH表现出与商用NADH相似的活性。光催化NADH再生电子传递与电子利用间竞争协调。受类囊体膜中光系统Ⅰ启发,设计了核壳结构金属有机框架(URh)“电子缓冲罐”实现了电子传递和电子利用间竞争协调。在光催化过程中,URh核内光敏剂(2-氨基对苯二甲酸,NH2-BDC)吸收光能产生激发态电子,随后将其传递到壳层Zr6O8团簇上。壳层上相邻的反应中心,[Cp*Rh(bpydc)H2O]2+,作为“电子缓冲罐”,将电子以氢负离子形式储存,并用于NADH再生。光催化NADH再生收率达78.9%(1 mM),初始反应速率为5.06 mmol h-1 g-1,分别为对应均相反应系统的1.87倍和2.08倍。将URh与氨基酸脱氢酶耦合,构建了酶光偶联人工光合系统,实现了氨基酸的连续合成。MOFs光催化NADH再生光诱导配体到金属电子传递机制。利用瞬态吸收光谱,电子顺磁共振和循环伏安法研究了 URh中电子传递机制。证实了光敏剂NH2-BDC到Zr6O8团簇的爬坡(uphill)电子传递,通过连续双光子顺次激发单电子,克服了电子爬坡传递的能垒,实现了光诱导配体到金属电子传递。同时,利用1H NMR验证了 NAD+加氢反应的质子源。基于此,提出了 URh光催化NADH再生机制:光敏剂NH2-BDC吸收两个光子激发单个电子;电子通过光诱导配体到金属电子传递机制传递给Zr6O8团簇;Rh从Zr6O8团簇提取两个电子,从水中提取一个质子,形成氢化物并催化NADH再生。研究MOFs光催化NADH再生机制为揭示自然界光合作用电子传递机制,利用无机材料重现并超越光反应的超高量子效率提供了可能。

Raza Ullah[8](2020)在《斜发沸石负载TiO2用于水中有机染料的高效光催化降解》文中指出水污染问题是现代社会关注的主要环境问题之一。大量污水来自于工业生产和家庭生活,它们携带着各种化学物质如果未经处理被排入湖泊、河流和海洋后则会严重影响水质。其中,含有染料的污水由于其具有致癌性,在排放之前必须进行治理。目前,处理该类污水的方法很多,但是大多集中在选择不同的吸附材料。近年来,人们提出先进氧化技术(AOT),在多相光催化体系中通过光催化剂(TiO2,ZnO,CuO)吸收光能产生电子-空穴对,从而在催化剂表面诱发高活性自由基(如羟基)来降解污水中的有机物,并促使其完全矿化。TiO2作为一种高效、低成本、环境友好的新型非均相光催化材料,在污水处理和可再生能源的开发利用方面具有广阔的应用前景。然而,由于TiO2的电子空穴重组速率快、催化剂回收步骤复杂、电子空穴转运机制等因素极大地限制其大规模实际应用,并成为光催化领域面临的主要挑战之一。为提高TiO2的光催化性能,将TiO2负载到沸石、二氧化硅、石墨等多孔载体表面是克服上述纯TiO2诸多局限性的重要手段。其中沸石由于其具有优良的吸附、离子交换和催化性能被认为是最常用的载体之一。本文以天然沸石和合成沸石为载体负载TiO2以提高其分散性,减少团聚,同时抑制电子空穴复合速率,增强有机分子的吸附性,从而提高光催化效率。分别采用水热法、原位水热法和溶胶-凝胶法成功制备出TiO2/斜发沸石(TiO2/CP)固相催化剂。详细考察了温度、pH值、TiO2前驱体浓度和在原位水热合成过程中添加的氟离子(F-)浓度等参数对TiO2/CP催化剂中TiO2的粒径、晶相、结晶度及其团聚态的影响。结果表明,随着合成温度升高、F-离子浓度增加、酸性增强,TiO2/CP催化剂比表面积减小,粒径增大,结晶度有所提高。特别是随着合成体系中酸性增强和F-离子浓度增加,有利于金红石或锐钛矿相TiO2在斜发沸石表面更加均匀分散。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、傅立叶变换红外光谱(FTIR)、紫外可见吸收光谱(UV-vis)和低温氮气吸脱附等温线(BET)对TiO2/CP催化剂的结构特征、织构参数以及形貌和组成等物理化学性质进行了深入表征。结果表明,通过原位水热法制备的TiO2/CP催化剂表面具有较高的负电性(其pHPZC值为2.3),且负载的TiO2颗粒在类叶状斜发沸石表面均匀分散;而溶胶-凝胶法和水热法制备的TiO2/CP催化剂表面则显示出较高的pHPZC值,分别为4.1和5.9,且负载的TiO2颗粒在相对卷曲的斜发沸石表面出现明显聚集态。以降解水中紫罗兰(CV)和甲基橙(MO)为模型反应,详细探索了TiO2/CP催化剂合成方法及其晶相、粒径、比表面积和表面电荷电势等性质对光催化性能的影响。结果表明,虽然天然斜发沸石作为载体在能耗成本方面有显着优势;合成斜发沸石作为载体在CV去除效率方面较为有效,但是,原位水热过程由于能耗适中是制备TiO2/CP催化剂的最佳方法,所制备的TiO2/CP催化剂具有对CV吸附容量大和去除率高等优点。因此,重点阐述了原位水热法制备的TiO2/CP催化剂用量、溶液初始p H值、CV初始浓度等参数对光降解性能的影响。

Mesfin Atlaw Eshete[9](2020)在《新型半导体-金属-异质结的理论模拟与设计》文中提出在异质结构中实现广谱的太阳能吸收和良好的电荷分离是设计高效光催化剂的一大挑战。Z型异质结光催化材料的设计,可以有效利用两种半导体覆盖不同太阳能光谱区域,并基于二者的能带错位诱导电子和空穴电荷聚集于不同的半导体中实现电荷分离。然而,许多Z型异质结的设计并未考虑电荷分离的能量依赖,导致往往是低能的激发态电荷被分离,而能量较低的电子空穴却被保留下来。在本文中,我们设计了一种能量依赖的三元块体和薄膜Cu2S-Pt-W03(p型半导体-金属-n型半导体)欧姆异质结,用以探索可行的实现高效电荷分离的方法。第一性原理计算表明,体系的费米能级通过金属Pt的介导作用对齐,这促使Cu2S中的空穴和W03中的电子的复合,从而维持了 Cu2S的电子和W03的空穴的高效分离。重要的是,能带的弯曲和电荷极化的产生将低能电荷选择性地导向中间金属,并使高能电荷保持在各个半导体上。我们的模拟分析进一步发现,与三维块体对照组相比,二维金属桥梁表现出更强的穿过异质结的电荷流动性质。总的来说,这种异质结可以抑制光生电子-空穴对的复合,并增加每个表面的电子数,这将有利于增强光电转化。进一步的,我们还提出了一种能量依赖的Sn-m-Sp(n型半导体-金属-p型半导体)肖特基异质结方案,作为一种可行的途径,用以获取广谱太阳光吸收,同时通过选择性地控制电荷,实现良好的电荷分离。作为概念验证研究,我们对CdS-Au-PdO和Sn02-W-Ag2O异质材料开展了第一性原理理论研究。计算表明体系的费米能级通过媒介金属对齐,由于半导体与金属间的功函数差,Wn<Wm<Wp,导致的电子从Sn流向m,再从m流向Sp。在能带弯曲或肖特基结的作用下,在异质结处产生的内电场分别将CdS(Sn02)的低能电子和PdO(Ag20)的空穴分别选择性地输送到金属Ag(W)中,同时将高能电荷注入各个半导体,从而实现高效的电荷分离。重要的是,微小的肖特基势垒的形成抑制了光生电子-空穴对的复合,从而实现了高效的光电转化。

刘米安(Md Manik Mian)[10](2020)在《污泥生物炭基催化剂的制备及其对水中有机污染物的氧化降解机理研究》文中进行了进一步梳理污水污泥是污水处理厂不可避免的副产物,随着工业化和城市化进程的加快,其数量呈单调递增趋势上升。传统的污泥处理方法存在着环境安全性和成本效益等诸多问题。相对于这些问题,污泥热解产物(生物炭)表现出了环境友好性和对各种污染物吸附能力的优点。然而,由于吸附性和回收性较低,污泥生物炭是一种使用效率低的吸附剂。采用先进的方法将污泥转化为生物炭,可以得到一种对有机物氧化降解具有一定催化效率的工程金属有机骨架。这种情况促使我们开发污泥衍生生物炭作为催化剂,通过各种工程方法氧化降解有机污染物。本文的主要研究成果如下:1.利用污泥浸渍前体单步热解法制备了新型TiO2/Fe/Fe3C生物炭复合材料。采用混凝絮凝技术将污泥和不同比例的纳米粒子(NPs:Fe和Ti)导壳聚糖混合。结果表明,NPs配比和掺杂工艺对催化剂的形貌和催化活性有显着影响。我们合成的最好催化剂通过H2O2活化生成·OH对MB具有良好的催化降解作用,并通过清除实验和降解产物分析证实了这一点。结果表明,季铵态氮、部分Fe0和Fe3C碳层的协同作用是催化活性中心。在中性pH条件下,同时进行的吸附和氧化反应对MB的去除量最大为376.9 mg L-1。2.通过NH4OH激活和热解(800℃)合成了负载MnOx的污泥生物炭催化剂(ASMn-Nb),以促进过氧化单硫酸盐(PMS)的分解和酸性橙7和罗丹明B的降解,NH4OH活化显着提高了 N-杂原子、表面积和微孔率。合成的复合催化剂在较宽的pH(3-10)范围内表现出良好的PMS分解能力,未经处理的污泥生物炭相比,在40分钟内提高了 16%-100%的AO7去除率。自由基和非自由基控制PMS分解过程,介导的电子转移是主要的,而1O2、SO4·-和·OH自由基诱导的催化是PMS激活和随后的AO7降解的次要机制。3.制备了一系列污泥衍生生物炭作为对PMS活化和降解有机污染物的催化剂。采用化学处理(例如,NH4OH、KOH或HCl在热解前、后、或在热解前、热解后均进行处理)和各种热解条件合成污泥生物炭基催化剂。我们合成的最好催化剂在PMS/酸性介质中对难降解有机物的氧化降解表现出优异的性能。吡啶N的非自由基过程是主要的催化机制,而吡咯N、活性C(+)和表面积支持污染物的吸附。4.采用一步热解法制备了一组富氮污泥生物炭。通过添加不同比例的三聚氰胺,改变了合成生物炭复合材料的含氮量。样品表征结果表明,污泥-三聚氰胺复合生物炭SM-(0.5:1)的含氮量较原污泥生物炭显着提高,由1.91%提高到了 9.93%。因此,表面积和中孔隙度也随之增加。在PMS/酸性介质中,SM-(0.5:1)对难降解有机污染物有很好的降解能力,表现出比之前很多报道的碳催化剂有更好的降解能力。一项机制研究表明,吡啶N的非自由基过程控制了污染物的氧化降解,而不是由石墨N,C=O和表面金属氧化物控制的SO4·-和·OH自由基过程。上述研究不仅为污泥的高效脱氮提供了一些便利条件,而且为水的净化提供了一种经济有效的方法,可以发展基于循环经济原理的环境工艺。此外,对催化过程的详细研究使人们对催化活性位点和催化机制的具体作用有了新的科学认识,这可能会丰富基于PMS的AOPs文献。

二、Photocatalytic reaction kinetics model based on electrical double layer theoryⅡ. Infrared spectroscopic characterization of methyl orange adsorption on TiO_2 surface(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、Photocatalytic reaction kinetics model based on electrical double layer theoryⅡ. Infrared spectroscopic characterization of methyl orange adsorption on TiO_2 surface(论文提纲范文)

(1)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)

1. Introduction
    (1) With the society development pavement engineering facing unprecedented opportunities and challenges
    (2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature
2. Asphalt binder performance and modeling
    2.1. Binder damage,healing and aging behaviors
        2.1.1. Binder healing characterization and performance
        2.1.1. 1. Characterizing approaches for binder healing behavior.
        2.1.1. 2. Various factors influencing binder healing performance.
        2.1.2. Asphalt aging:mechanism,evaluation and control strategy
        2.1.2. 1. Phenomena and mechanisms of asphalt aging.
        2.1.2. 2. Simulation methods of asphalt aging.
        2.1.2. 3. Characterizing approaches for asphalt aging behavior.
        2.1.2. 4. Anti-aging additives used for controlling asphalt aging.
        2.1.3. Damage in the characterization of binder cracking performance
        2.1.3. 1. Damage characterization based on rheological properties.
        2.1.3. 2. Damage characterization based on fracture properties.
        2.1.4. Summary and outlook
    2.2. Mechanism of asphalt modification
        2.2.1. Development of polymer modified asphalt
        2.2.1. 1. Strength formation of modified asphalt.
        2.2.1. 2. Modification mechanism by molecular dynamics simulation.
        2.2.1. 3. The relationship between microstructure and properties of asphalt.
        2.2.2. Application of the MD simulation
        2.2.2. 1. Molecular model of asphalt.
        2.2.2. 2. Molecular configuration of asphalt.
        2.2.2. 3. Self-healing behaviour.
        2.2.2. 4. Aging mechanism.
        2.2.2. 5. Adhesion mechanism.
        2.2.2. 6. Diffusion behaviour.
        2.2.3. Summary and outlook
    2.3. Modeling and application of crumb rubber modified asphalt
        2.3.1. Modeling and mechanism of rubberized asphalt
        2.3.1. 1. Rheology of bituminous binders.
        2.3.1. 2. Rheological property prediction of CRMA.
        2.3.2. Micromechanics-based modeling of rheological properties of CRMA
        2.3.2. 1. Composite system of CRMA based on homogenization theory.
        2.3.2. 2. Input parameters for micromechanical models of CRMA.
        2.3.2. 3. Analytical form of micromechanical models of CRMA.
        2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance.
        2.3.3. Design and performance of rubberized asphalt
        2.3.3. 1. The interaction between rubber and asphalt fractions.
        2.3.3. 2. Engineering performance of rubberized asphalt.
        2.3.3. 3. Mixture design.
        2.3.3. 4. Warm mix rubberized asphalt.
        2.3.3. 5. Reclaiming potential of rubberized asphalt pavement.
        2.3.4. Economic and Environmental Effects
        2.3.5. Summary and outlook
3. Mixture performance and modeling of pavement materials
    3.1. The low temperature performance and freeze-thaw damage of asphalt mixture
        3.1.1. Low temperature performance of asphalt mixture
        3.1.1. 1. Low temperature cracking mechanisms.
        3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders.
        3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures.
        3.1.1. 4. Low temperature behavior of asphalt materials.
        3.1.1.5.Effect factors of low temperature performance of asphalt mixture.
        3.1.1. 6. Improvement of low temperature performance of asphalt mixture.
        3.1.2. Freeze-thaw damage of asphalt mixtures
        3.1.2. 1. F-T damage mechanisms.
        3.1.2. 2. Evaluation method of F-T damage.
        3.1.2. 3. F-T damage behavior of asphalt mixture.
        (1) Evolution of F-T damage of asphalt mixture
        (2) F-T damage evolution model of asphalt mixture
        (3) Distribution and development of asphalt mixture F-T damage
        3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture.
        3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture.
        3.1.3. Summary and outlook
    3.2. Long-life rigid pavement and concrete durability
        3.2.1. Long-life cement concrete pavement
        3.2.1. 1. Continuous reinforced concrete pavement.
        3.2.1. 2. Fiber reinforced concrete pavement.
        3.2.1. 3. Two-lift concrete pavement.
        3.2.2. Design,construction and performance of CRCP
        3.2.2. 1. CRCP distress and its mechanism.
        3.2.2. 2. The importance of crack pattern on CRCP performance.
        3.2.2. 3. Corrosion of longitudinal steel.
        3.2.2. 4. AC+CRCP composite pavement.
        3.2.2. 5. CRCP maintenance and rehabilitation.
        3.2.3. Durability of the cementitious materials in concrete pavement
        3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement.
        3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement.
        3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement.
        3.2.4. Summary and outlook
    3.3. Novel polymer pavement materials
        3.3.1. Designable PU material
        3.3.1. 1. PU binder.
        3.3.1.2.PU mixture.
        3.3.1. 3. Material genome design.
        3.3.2. Novel polymer bridge deck pavement material
        3.3.2. 1. Requirements for the bridge deck pavement material.
        3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM).
        3.3.3. PU permeable pavement
        3.3.3. 1. Permeable pavement.
        3.3.3. 2. PU porous pavement materials.
        3.3.3. 3. Hydraulic properties of PU permeable pavement materials.
        3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials.
        3.3.3. 5. Environmental advantages of PU permeable pavement materials.
        3.3.4. Polyurethane-based asphalt modifier
        3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier.
        3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen.
        3.3.4. 3. The performance of polyurethane modified asphalt mixture.
        3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt.
        3.3.5. Summary and outlook
    3.4. Reinforcement materials for road base/subrgrade
        3.4.1. Flowable solidified fill
        3.4.1. 1. Material composition design.
        3.4.1. 2. Performance control.
        3.4.1. 3. Curing mechanism.
        3.4.1. 4. Construction applications.
        3.4.1.5.Environmental impact assessment.
        3.4.1. 6. Development prospects and challenges.
        3.4.2. Stabilization materials for problematic soil subgrades
        3.4.2.1.Stabilization materials for loess.
        3.4.2. 2. Stabilization materials for expansive soil.
        3.4.2. 3. Stabilization materials for saline soils.
        3.4.2. 4. Stabilization materials for soft soils.
        3.4.3. Geogrids in base course reinforcement
        3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements.
        (1) Reinforced granular material
        (2) Reinforced granular base course
        3.4.3. 2. Summary.
        3.4.4. Summary and outlook
4. Multi-scale mechanics
    4.1. Interface
        4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate
        4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface.
        4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface.
        4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder.
        (1) Rheological mechanical method
        (2) Microscopic test
        4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate.
        4.1.2. Multi-scale numerical simulation method considering interface effect
        4.1.2. 1. Multi-scale effect of interface.
        4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology.
        4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics.
        4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics.
        4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture.
        4.1.3. Multi-scale investigation on interface deterioration
        4.1.4. Summary and outlook
    4.2. Multi-scales and numerical methods in pavement engineering
        4.2.1. Asphalt pavement multi-scale system
        4.2.1. 1. Multi-scale definitions from literatures.
        4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System.
        (1) Structure-scale
        (2) Mixture-scale
        (3) Material-scale
        4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys-
        4.2.2. Multi-scale modeling methods
        4.2.2. 1. Density functional theory (DFT) calculations.
        4.2.2. 2. Molecular dynamics (MD) simulations.
        4.2.2. 3. Composite micromechanics methods.
        4.2.2. 4. Finite element method (FEM) simulations.
        4.2.2. 5. Discrete element method (DEM) simulations.
        4.2.3. Cross-scale modeling methods
        4.2.3. 1. Mechanism of cross-scale calculation.
        4.2.3. 2. Multi-scale FEM method.
        4.2.3. 3. FEM-DEM coupling method.
        4.2.3. 4. NMM family methods.
        4.2.4. Summary and outlook
    4.3. Pavement mechanics and analysis
        4.3.1. Constructive methods to pavement response analysis
        4.3.1. 1. Viscoelastic constructive models.
        4.3.1. 2. Anisotropy and its characterization.
        4.3.1. 3. Mathematical methods to asphalt pavement response.
        4.3.2. Finite element modeling for analyses of pavement mechanics
        4.3.2. 1. Geometrical dimension of the FE models.
        4.3.2. 2. Constitutive models of pavement materials.
        4.3.2. 3. Variability of material property along with different directions.
        4.3.2. 4. Loading patterns of FE models.
        4.3.2. 5. Interaction between adjacent pavement layers.
        4.3.3. Pavement mechanics test and parameter inversion
        4.3.3. 1. Nondestructive pavement modulus test.
        4.3.3. 2. Pavement structural parameters inversion method.
        4.3.4. Summary and outlook
5. Green and sustainable pavement
    5.1. Functional pavement
        5.1.1. Energy harvesting function
        5.1.1. 1. Piezoelectric pavement.
        5.1.1. 2. Thermoelectric pavement.
        5.1.1. 3. Solar pavement.
        5.1.2. Pavement sensing function
        5.1.2. 1. Contact sensing device.
        5.1.2.2.Lidar based sensing technology.
        5.1.2. 3. Perception technology based on image/video stream.
        5.1.2. 4. Temperature sensing.
        5.1.2. 5. Traffic detection based on ontology perception.
        5.1.2. 6. Structural health monitoring based on ontology perception.
        5.1.3. Road adaptation and adjustment function
        5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68).
        5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface.
        5.1.3. 3. Self-healing pavement.
        5.1.4. Summary and outlook
    5.2. Renewable and sustainable pavement materials
        5.2.1. Reclaimed asphalt pavement
        5.2.1. 1. Hot recycled mixture technology.
        5.2.1. 2. Warm recycled mix asphalt technology.
        5.2.1. 3. Cold recycled mixture technology.
        (1) Strength and performance of cold recycled mixture with asphalt emulsion
        (2) Variability analysis of asphalt emulsion
        (3) Future prospect of cold recycled mixture with asphalt emulsion
        5.2.2. Solid waste recycling in pavement
        5.2.2. 1. Construction and demolition waste.
        (1) Recycled concrete aggregate
        (2) Recycled mineral filler
        5.2.2. 2. Steel slag.
        5.2.2. 3. Waste tire rubber.
        5.2.3. Environment impact of pavement material
        5.2.3. 1. GHG emission and energy consumption of pavement material.
        (1) Estimation of GHG emission and energy consumption
        (2) Challenge and prospect of environment burden estimation
        5.2.3. 2. VOC emission of pavement material.
        (1) Characterization and sources of VOC emission
        (2) Health injury of VOC emission
        (3) Inhibition of VOC emission
        (4) Prospect of VOC emission study
        5.2.4. Summary and outlook
6. Intelligent pavement
    6.1. Automated pavement defect detection using deep learning
        6.1.1. Automated data collection method
        6.1.1. 1. Digital camera.
        6.1.1.2.3D laser camera.
        6.1.1. 3. Structure from motion.
        6.1.2. Automated road surface distress detection
        6.1.2. 1. Image processing-based method.
        6.1.2. 2. Machine learning and deep learning-based methods.
        6.1.3. Pavement internal defect detection
        6.1.4. Summary and outlook
    6.2. Intelligent pavement construction and maintenance
        6.2.1. Intelligent pavement construction management
        6.2.1. 1. Standardized integration of BIM information resources.
        6.2.1. 2. Construction field capturing technologies.
        6.2.1. 3. Multi-source spatial data fusion.
        6.2.1. 4. Research on schedule management based on BIM.
        6.2.1. 5. Application of BIM information management system.
        6.2.2. Intelligent compaction technology for asphalt pavement
        6.2.2. 1. Weakened IntelliSense of ICT.
        6.2.2. 2. Poor adaptability of asphalt pavement compaction index.
        (1) The construction process of asphalt pavement is affected by many complex factors
        (2) Difficulty in model calculation caused by jumping vibration of vibrating drum
        (3) There are challenges to the numerical stability and computational efficiency of the theoretical model
        6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling.
        6.2.3. Intelligent pavement maintenance decision-making
        6.2.3. 1. Basic functional framework.
        6.2.3. 2. Expert experience-based methods.
        6.2.3. 3. Priority-based methods.
        6.2.3. 4. Mathematical programming-based methods.
        6.2.3. 5. New-gen machine learning-based methods.
        6.2.4. Summary and outlook
        (1) Pavement construction management
        (2) Pavement compaction technology
        (3) Pavement maintenance decision-making
7. Conclusions
Conflict of interest

(2)Di erences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges(论文提纲范文)

HIGHLIGHTS
1 Introduction
2 Strategies for Catalytic Performance Enhancement of 2D Nanomaterials
    2.1 Superiority of 2D Nanocatalysts
    2.2 Similarities in Strategies of Photocatalysis and Electrocatalysis
    2.3 Di erences in Strategies of Photocatalysis and Electrocatalysis
3 Traps of Catalytic Systems in 2D Nanomaterials
4 D Nanocatalysts
    4.1 Classification of 2D Nanocatalysts
    4.2 Structures of 2D Nanocatalysts
    4.3 Synthesis of 2D Nanocatalysts
    4.4 Characterization of 2D Nanocatalysts
5 Catalytic Applications of 2D Nanomaterials
    5.1 Dye Degradation
    5.2 Elimination of Toxicants
    5.3 Hydrogen Evolution Reaction (HER)
    5.4 Oxygen Evolution Reaction (OER)
    5.5 Carbon Dioxide Reduction Reaction (CO2RR)
    5.6 Cancer Therapy
6 Future Perspective and Challenges

(3)可见光响应光电阳极的设计合成及其光电催化水分解性能研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景
    1.2 光电化学水分解的基本原理
    1.3 光电水分解系统的基本结构
    1.4 半导体光电化学表征的重要参数
    1.5 光电阳极半导体类型和研究进展
        1.5.1 过渡金属氧化物半导体
        1.5.2 非氧化物半导体
        1.5.2.1 过渡金属氮(氧)化物
        1.5.2.2 过渡金属硫化物
    1.6 光电性能优化策略
        1.6.1 形貌调控
        1.6.2 能带调控
        1.6.3 构建异质结
        1.6.4 修饰钝化层
        1.6.5 修饰助催化剂
    1.7 本论文的选题目的及意义
    1.8 参考文献
第二章 基于表面缺陷态调控增强金属硫化物基光电阳极光电催化水分解性能
    2.1 引言
    2.2 实验部分
        2.2.1 原料与试剂
        2.2.2 合成方法
        2.2.3 样品表征
        2.2.4 光电化学测试
    2.3 结果与讨论
        2.3.1 物相结构和形貌特征
        2.3.2 光电催化性能
        2.3.3 光学及光电表征
        2.3.4 电荷传输与重组动力学研究
        2.3.5 理论计算
    2.4 本章小结
    2.5 参考文献
第三章 基于表面态调控增强CdIn_2S_4/InO_x/NiFe-LDH复合光电阳极光电催化水分解性能
    3.1 引言
    3.2 实验部分
        3.2.1 原料与试剂
        3.2.2 合成方法
        3.2.3 样品表征
    3.3 结果与讨论
        3.3.1 物相结构和形貌特征
        3.3.2 光电催化性能
        3.3.3 光学及光电表征
        3.3.4 电荷传输与重组动力学研究
    3.4 本章小结
    3.5 参考文献
第四章 基于界面耦合效应增强TaON/Au/ZnCo-LDH复合光电阳极的电荷传输以及光电催化性能
    4.1 引言
    4.2 实验部分
        4.2.1 原料与试剂
        4.2.2 合成方法
        4.2.3 样品表征
        4.2.4 光电化学测试
    4.3 结果与讨论
        4.3.1 物相结构和形貌特征
        4.3.2 光学及能带位置表征
        4.3.3 光电催化性能
        4.3.4 光电催化机理研究
        4.3.5 理论计算
    4.4 本章小结
    4.5 参考文献
总结与展望
致谢
攻读博士期间发表和待发表的论文
学位论文评阅及答辩情况表
附件

(4)氧化钴/碳基材料析氧电催化剂的设计和可控合成(论文提纲范文)

Abstract
摘要
List of symbols, units, and abbreviations
1 Introduction
    1.1 Sustainable energy and hydrogen production
    1.2 Water splitting
        1.2.1 Electrochemical cell
        1.2.2 Thermodynamic potential of water splitting
    1.3 Oxygen evolution reaction (OER)
    1.4 Evaluation parameters for OER catalysts
        1.4.1 Overpotential
        1.4.2 Tafel slope
        1.4.3 Exchange current density
        1.4.4 Electrochemical active surface area
        1.4.5 Faradaic efficiency
        1.4.6 Stability
    1.5 OER electrocatalysts
    1.6 Opportunity and challenges of Co-based OER electrocatalysts
    1.7 Tailoring the activity of OER electrocatalysts
        1.7.1 Electronic structure and catalytic activity
        1.7.2 Morphology control and porosity
        1.7.3 Catalytic stability-activity relationship
        1.7.4 Conductivity effect
        1.7.5 The active site
        1.7.6 Nitrogen doping
        1.7.7 Catalyst synergy
    1.8 Research motivation and objective
    1.9 Outline of this dissertation
2 Experimental
    2.1 Instruments
    2.2 Chemical reagents
    2.3 Characterization techniques
        2.3.1 Scanning electron microscopy
        2.3.2 Powder X-ray diffraction
        2.3.3 N_2 adsorption-desorption isotherm
        2.3.4 Fourier transform infrared spectroscopy
        2.3.5 Thermogravimetric analysis
        2.3.6 Raman spectroscopy
        2.3.7 X-ray photoelectron spectroscopy
    2.4 Electrochemical and electrocatalytic techniques
        2.4.1 Cyclic voltammetry
        2.4.2 Linear sweep voltammetry
        2.4.3 Electrochemical impedance spectroscopy
        2.4.4 Chronoamperometry
    2.5 Experimental setup for electrochemical and electrocatalytic testing
    2.6 Working electrode (modified-GCE) preparation
3 Cobalt-pyrazolate-derived N-doped porous carbon with embedded Co_3O_4
    3.1 Introduction
    3.2 Synthesis of materials
        3.2.1 Co(pz) and Co_3O_4@N-C
        3.2.2 Pristine Co_3O_4
    3.3 Results and discussion
        3.3.1 Morphology and structural characterization
        3.3.2 Electrocatalytic measurements
    3.4 Conclusion
4 Synthesis of Co_3O_4/N-CNTs from a newly designed ZIF-67/PPy NTs composite
    4.1 Introduction
    4.2 Synthesis of materials
        4.2.1 PPy NTs
        4.2.2 ZIF-67
        4.2.3 ZIF-67/PPy NTs
        4.2.4 Co_3O_4/N-CNTs
    4.3 Results and discussion
        4.3.1 Morphology and structural characterization
        4.3.2 Electrocatalytic measurements
    4.4 Conclusion
5 3D flower-like PPy-derived N-doped porous carbon embellished with Co_3O_4
    5.1 Introduction
    5.2 Synthesis of materials
        5.2.1 3D flower-like PPy
        5.2.2 Co_3O_4/N-C
    5.3 Results and discussions
        5.3.1 Morphology and structural characterization
        5.3.2 Formation mechanism of 3D flower-like PPy structures
        5.3.3 Electrocatalytic measurements
    5.4 Comparison of OER performance with previous literature
    5.5 Conclusion
6 Conclusion and future horizons
    6.1 Conclusion
    6.2 Abstract of innovation points
    6.3 Future horizons
References
Publications during Ph.D. period
Acknowledgements
About the Author

(5)生物炭基材料对水溶液中环丙沙星的去除效能及机制解析(论文提纲范文)

ABSTRACT
摘要
CHAPTER 1. INTRODUCTION AND STATEMENT OF PURPOSE
    1.1 Research background
    1.2 Emergence of pharmaceuticals in water
        1.2.1 Emergence of ciprofloxacin in water
        1.2.2 Toxic effects of ciprofloxacin
    1.3 Removal of ciprofloxacin
        1.3.1 Adsorption
        1.3.2 Advanced oxidation process
        1.3.3 Membrane filtration
    1.4 Biochar and its characteristics
    1.5 Chitosan
    1.6 Humic acid
    1.7 Research Objectives
    1.8 Thesis Organization
CHAPTER 2. ENHANCEMENT OF CIPROFLOXACIN SORPTION ON CHITOSAN/BIOCHAR HYDROGEL BEADS
    2.1 Introduction
    2.2 Materials and methods
        2.2.1 Materials
        2.2.2 Biochar preparation
        2.2.3 Chitosan biochar hydrogel beads preparation
        2.2.4 Characterization methods
        2.2.5 Water content in CBHB
        2.2.6 Adsorption experiments
        2.2.7 Desorption and regeneration studies
    2.3 Results and discussions
        2.3.1 Characterization results
        2.3.2 pH effect
        2.3.3 Solvent Effect
        2.3.4 Adsorption kinetics
        2.3.5 Adsorption isotherms
        2.3.6 Mechanism of adsorption
        2.3.7 Electrolytic effects
        2.3.8 Desorption
    2.4 Summary
CHAPTER 3. ENHANCED REMOVAL OF CIPROFLOXACIN USING HUMIC ACIDMODIFIED HYDROGEL BEADS
    3.1 Introduction
    3.2 Materials and methods
        3.2.1 Materials
        3.2.2 Preparation of biochar, HA-BC and hydrogel beads
        3.2.3 Characterization methods
        3.2.4 Adsorption experiments
        3.2.5 Desorption and regeneration studies
    3.3 Results and discussions
        3.3.1 Characterization results
        3.3.2 Role of humic acid on adsorption
        3.3.3 pH effect
        3.3.4 Electrolytic effects
        3.3.5 Adsorption kinetics
        3.3.6 Adsorption isotherms
        3.3.7 Mechanism of adsorption
        3.3.8 Desorption
    3.4 Summary
CHAPTER 4. SONOCATALYTIC DEGRADATION OF CIPROFLOXACIN USING HYDROGEL BEADS OF Ti02 INCORPORATED BIOCHAR AND CHITOSAN
    4.1 Introduction
    4.2 Materials and methods
        4.2.1 Materials
        4.2.2 Biochar preparation and its incorporation with Ti〇2
        4.2.3 Preparation of hydrogel beads from Ti-BC
        4.2.4 Characterization methods
        4.2.5 Adsorption and degradation experiments
    4.3 Results and discussion
        4.3.1 Characterization of biochar,Ti-BC and TBCB
        4.3.2 Adsorption kinetics
        4.3.3 Adsorption isotherms
        4.3.4 Influence of different operational parameters on sonocatalytic process
        4.3.5 Intermediates during degradation
        4.3.6 Regeneration of catalyst
    4.4 Summary
CHAPTER 5. REMOVAL OF CIPROFLOXACIN USING BIOCHAR COMPOSITE MEMBRANES
    5.1 Introduction
    5.2 Materials and methods
        5.2.1 Materials
        5.2.2 Preparation of biochar/PES membranes
        5.2.3 Characterization of membranes
        5.2.4 Filtration experiments
    5.3 Results and discussion
        5.3.1 Morphology and structure of membranes
        5.3.2. Properties of membranes
        5.3.3 Performance of membranes
        5.3.4 Regeneration of membrane
    5.4 Summary
CHAPTER 6. CONCLUSIONS, INNOVATIONS AND PROSPECTS
    6.1 Conclusions
    6.2 Innovations
    6.3 Prospects
References
Acknowledgement
Publications
附件
学位论文评阅及答辩情况表

(6)实现选择脱除硫化氢与高效提取锂离子的印迹技术研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 印迹技术简介
        1.1.1 印迹聚合物发展历程
        1.1.2 印迹聚合物合成原理
        1.1.3 构筑印迹聚合物的主要元素
        1.1.4 印迹聚合物的制备方法
    1.2 印迹聚合物的应用领域
        1.2.1 水环境
        1.2.2 大气环境
        1.2.3 土壤环境
    1.3 硫化氢去除及硫资源回收的必要性
        1.3.1 硫化氢的性质及危害
        1.3.2 硫化氢的去除方法
        1.3.3 硫资源回收
    1.4 提取及回收锂资源的必要性
        1.4.1 锂的应用及市场需求
        1.4.2 锂资源的分布情况
    1.5 提取及回收液态锂资源的研究进展
        1.5.1 沉淀法
        1.5.2 煅烧浸取法
        1.5.3 溶剂萃取法
        1.5.4 碳化法
        1.5.5 离子交换树脂法
        1.5.6 吸附法
        1.5.7 锂离子印迹聚合物
    1.6 选题意义及研究内容
        1.6.1 选题意义
        1.6.2 主要研究内容
    1.7 技术路线
第二章 基于PMo_(12)@UiO-66的核壳结构H_2S印迹聚合物的调控制备及其选择吸附性能
    2.1 引言
    2.2 实验部分
        2.2.1 实验试剂
        2.2.2 实验仪器
        2.2.3 PMo_(12)@UiO-66@H_2S-MIPs的制备
        2.2.4 硫化氢吸附实验
        2.2.5 材料表征
    2.3 结果与讨论
        2.3.1 构筑H_2S-MIPs相关因素的影响
        2.3.2 材料的表征结果
        2.3.3 脱硫性能
        2.3.4 PMo_(12)@UiO-66添加量的影响
        2.3.5 水蒸汽的影响
        2.3.6 选择性能
        2.3.7 再生性能
        2.3.8 脱硫机理探讨
    2.4 本章小结
第三章 基于MWCNTs的锂离子印迹聚合物的制备及其选择吸附性能
    3.1 引言
    3.2 实验部分
        3.2.1 实验试剂
        3.2.2 实验仪器
        3.2.3 锂离子印迹聚合物(ⅡPs)的制备
        3.2.4 锂离子的测定方法
        3.2.5 吸附脱附实验
        3.2.6 材料表征
    3.3 结果与讨论
        3.3.1 材料的表征结果
        3.3.2 吸附动力学
        3.3.3 pH的影响
        3.3.4 等温吸附
        3.3.5 选择性能
        3.3.6 再生性能
    3.4 本章小结
第四章 基于建材级蛭石的锂离子印迹聚合物的制备及其选择吸附性能
    4.1 引言
    4.2 实验部分
        4.2.1 实验试剂
        4.2.2 实验仪器
        4.2.3 锂离子印迹聚合物(ⅡPs)的制备
        4.2.4 锂离子的测定方法
        4.2.5 吸附脱附实验
        4.2.6 材料表征
    4.3 结果与讨论
        4.3.1 构筑ⅡPs相关因素的影响
        4.3.2 材料的表征结果
        4.3.3 吸附动力学
        4.3.4 pH的影响
        4.3.5 温度的影响
        4.3.6 等温吸附
        4.3.7 选择性能
        4.3.8 再生性能
    4.4 本章小结
第五章 光敏锂离子印迹聚合物的制备及其光控吸附与再生性能
    5.1 引言
    5.2 实验部分
        5.2.1 实验试剂
        5.2.2 实验仪器
        5.2.3 光敏型锂离子印迹聚合物(P-ⅡPs)的制备
        5.2.4 锂离子的测定方法
        5.2.5 吸附脱附实验
        5.2.6 材料表征
    5.3 结果与讨论
        5.3.1 材料的表征结果
        5.3.2 光控性能
        5.3.3 吸附动力学
        5.3.4 温度影响
        5.3.5 pH的影响
        5.3.6 等温吸附
        5.3.7 选择性能
        5.3.8 再生性能
        5.3.9 吸附机理
    5.4 本章小结
第六章 结论与建议
    6.1 结论
    6.2 论文创新点
    6.3 存在的问题及建议
参考文献
致谢
博士期间学术成果
博士期间所获荣誉
附件
学位论文评阅及答辩情况表

(7)类囊体启发光驱动NADH再生系统构建及性能强化(论文提纲范文)

摘要
abstract
Chapter 1.Literature review
    1.1 Artificial photosynthesis
        1.1.1 Photo-chemical coupled artificial photosynthesis
        1.1.2 Photo-microorganism coupled artificial photosynthesis
        1.1.3 Photo-enzyme coupled artificial photosynthesis
    1.2 Photocatalytic NADH regeneration system
        1.2.1 NADH regeneration methods
        1.2.2 Basic principles of photocatalytic NADH regeneration
        1.2.3 NADH regeneration by photosensitizers
        1.2.4 NADH regeneration by inorganic semiconductors
        1.2.5 NADH regeneration by organic semiconductors
    1.3 Natural photosynthesis and its competitive coordination
        1.3.1 Competitive coordination of electron generation and electrontransfer in photosystem Ⅱ
        1.3.2 Competitive coordination of multi-step electron transfer inelectron transfer chain of thylakoid membrane
        1.3.3 Competitive coordination of electron transfer and electronutilization in photosystem Ⅰ
    1.4 Scope of this thesis
Chapter 2.Experimental section
    2.1 Materials and equipment
        2.1.1 Materials
        2.1.2 Equipment
    2.2 Characterizations
        2.2.1 Scanning electron microscopy
        2.2.2 Transmission electron microscopy
        2.2.3 Fourier transform infrared spectra
        2.2.4 X-ray diffraction
        2.2.5 X-ray photoelectron spectroscopy
        2.2.6 Inductively coupled plasma optical emission spectroscopy
        2.2.7 Photoluminescence spectroscopy
        2.2.8 Transient absorption spectroscopy
        2.2.9 Diffuse reflectance spectroscopy
        2.2.10 Electron paramagnetic resonance spectroscopy
        2.2.11 Mossbauer spectroscopy
        2.2.12 Nuclear magnetic resonance spectroscopy
    2.3 Test methods
        2.3.1 Photocatalytic NADH regeneration
        2.3.2 Aspects of measuring photocatalytic NADH regeneration
        2.3.3 Photo-enzyme coupled synthesis of chemicals
        2.3.4 Synthesis of [Cp~*Rh(bpy)H_2O]~(2+)
    2.4 Chapter summary
Chapter 3.Competitive coordination of electron generation and electrontransfer
    3.1 Introduction
    3.2 Methods
        3.2.1 Preparation of g-C_3N_4@α-Fe_2O_3/C photocatalysts
        3.2.2 Procedure of NADH regeneration
        3.2.3 Procedure of photo-enzyme coupled formaldehydehydrogenation
    3.3 Results and discussion
        3.3.1 Characterization of g-C_3N_4@α-Fe_2O_3/C core@shellphotocatalysts
        3.3.2 Optical and photoelectric properties of g-C_3N_4@α-Fe_2O_3/Ccore@shell photocatalysts
        3.3.3 Photocatalytic activities of g-C_3N_4@α-Fe_2O_3/C core@shellphotocatalysts
        3.3.4 Mechanism Analysis
    3.4 Chapter summary
Chapter 4.Competitive coordination of multi-step electron transfer
    4.1 Introduction
    4.2 Methods
        4.2.1 Preparation of g-C_3N_4@C-P25 photocatalysts
        4.2.2 Procedure of NADH regeneration
        4.2.3 Procedure of enzymatic NADH consumption
    4.3 Results and discussion
        4.3.1 Characterization of g-C_3N_4@C-P25 _photocatalysts
        4.3.2 Optical and photoelectric properties of g-C_3N_4@C-P25photocatalysts
        4.3.3 Photocatalytic activities of g-C_3N_4@C-P25 _photocatalysts
        4.3.4 Mechanism analysis
    4.4 Chapter summary
Chapter 5.Competitive coordination of electron transfer and electronutilization
    5.1 Introduction
    5.2 Methods
        5.2.1 Preparation of URh photocatalysts
        5.2.2 Procedure of NADH regeneration
        5.2.3 Procedure of photo-enzyme coupled methanol production
        5.2.4 Procedure of photo-enzyme coupled amino acid production
    5.3 Results and discussion
        5.3.1 Characterization of URh photocatalysts
        5.3.2 Optical and photoelectric property of URh photocatalysts
        5.3.3 Photocatalytic activities of URh photocatalysts
        5.3.4 Photo-enzyme coupled synthesis of amino acids
    5.4 Chapter summary
Chapter 6.Light-induced ligand-to-metal charge transfer mechanism of MOFs
    6.1 Introduction
    6.2 Methods
    6.3 Results and discussion
    6.4 Chapter summary
Chapter 7.Conclusion and perspectives
    7.1 Conclusions
    7.2 Highlights
    7.3 Perspectives
References
Publications and scientific research participation
Acknowledgement

(8)斜发沸石负载TiO2用于水中有机染料的高效光催化降解(论文提纲范文)

摘要
Abstract
Chapter 1 Introduction
    1.1 Background and motivation
    1.2 Techniques used to remove dyes from water
        1.2.1 Advanced Oxidation Technologies/Processes(AOTs/AOPs)
    1.3 Research content
    1.4 Objectives
    1.5 Main features and innovation points
Chapter 2 Synthesis and characterization of TiO_2/clinoptilolite
    2.1 Introduction
    2.2 Experiments
        2.2.1 Chemicals
        2.2.2 Basic laboratory apparatus
        2.2.3 Synthesis of TiO_2/CP
        2.2.4 Dye solution preparation
        2.2.5 Adsorption and photocatalytic degradation
        2.2.6.Parameters affecting the degradation of pollutants
        2.2.7 Kinetics studies
        2.2.8 Regeneration and recycling studies
    2.3 Physico-chemical characterization of TiO_2/CPs
        2.3.1 XRD analysis
        2.3.2 FTIR analysis
        2.3.3 ICP-OES analysis
        2.3.4 BET surface area analysis
        2.3.5 Ultraviolet/visible(UV-vis)spectrophotometry
        2.3.6 Scanning/Transmission Electron Microscopy(SEM/TEM)
Chapter 3 Hydrothermal synthesis of TiO_2-supported clinoptilolite with controlled crystal phase and particle size of loaded-TiO_2 for the degradation of crystal violet dye in aqueous media
    3.1 Introduction
    3.2 Experiments
        3.2.1 Reagent,chemicals and instruments
        3.2.2 TiO_2/CP preparation
    3.3.Results and discussion
        3.3.1 X-ray diffraction patterns of TiO_2/CPs
        3.3.2 FTIR spectra and Zeta potential of TiO_2/CPs
        3.3.3 Photoluminescence spectra of TiO_2/CP
        3.3.4 Band gap,surface areas and chemical formulae of TiO_2/CP
        3.3.5 SEM images of TiO_2/CP
        3.3.6 TEM images of TiO_2/CPs
    3.4 Photo-catalytic degradation
        3.4.1 Effect of type TiO_2/CPs
        3.4.2 Effect of dose,pH values,and Irradiation time
        3.4.3 Effect of initial concentration of dye and kinetics study
        3.4.4 Mechanism of photo-catalytic activity
        3.4.5 Catalyst recycling
    3.5 Summary of the chapter
Chapter 4 One-step hydrothermal synthesis of TiO_2-supported clinoptilolite integrated photocatalytic adsorbents for removal of crystal violet dye from aqueous media
    4.1 Introduction
    4.2 Experimental
        4.2.1 Reagents and instruments
        4.2.2 Synthesis of TiO_2/CP
        4.2.3 Adsorption and photocatalytic degradation
    4.3 Results and Discussion
        4.3.1 XRD patterns
        4.3.2 SEM and TEM images
        4.3.3 FTIR spectra and zeta potential
        4.3.4 Band gap,surface areas and TiO_2 content of TiO_2/CPs
        4.3.5 Removal of CV dye from aqueous solution via adsorption and photocatalytic degradation
        4.3.5.1 Effect of type of TiO_2/CP and pH values of reaction media
        4.3.5.2 Adsorption and Degradation kinetics of CV dye
        4.3.5.3 Activation energy of adsorption of CV dye
        4.3.5.4 Possible mechanism for photocatalytic degradation of CV dye
        4.3.5.5 Thermodynamics of adsorption of CV dye
        4.3.5.6 Equilibrium Isotherms
        4.3.5.7 Preliminary recycled performance using SCA3 as typical sample
        4.3.5.8 Comparison with the reported literature
    4.4 Chapter summary
Chapter 5 Comparative evaluation of the physico-chemical properties and photocatalytic activity of TiO_2/clinoptilolite synthesized via different methods
    5.1 Introduction
    5.2 Experiment
        5.2.1 Reagents and instruments
        5.2.2 Synthesis of TiO_2/CPs
        5.2.3 Adsorption and photocatalytic degradation
    5.3 Results and discussion
        5.3.1 XRD results
        5.3.2 SEM and TEM images
        5.3.3 FTIR spectra and zeta potential
        5.3.4 Band gap,surface areas and TiO_2-content of TiO_2/CPs
        5.3.5 Photo-degradation performances of TiO_2/CPs
        5.3.6 Adsorption and degradation kinetics
        5.3.7 Electrical power and chemical consumption assessment
    5.4 Chapter Summary
Chapter 6 Hydrothermal etching and fabrication of TiO_2-supported clinoptilolite (TiO_2/clinoptilolite) for the enhancement of its photocatalytic activity
    6.1 Introduction
    6.2 Experiment
        6.2.1 Materials and instruments
        6.2.2 Synthesis of TiO_2/CP catalysts
        6.2.3 Photo-catalytic degradation experiments
    6.3 Results and discussion
        6.3.1 XRD patterns
        6.3.2 SEM images
        6.3.3 TEM images
        6.3.4 FTIR spectra and zeta potential
        6.3.5 Physico-chemical properties of TiO_2/CPs
        6.3.6 Photo-degradation performance
    6.4 Chapter conclusion
Chapter 7 Conclusions and Recommendations
    7.1 Conclusions
    7.2 Recommendations
References
List of Publications
Acknowledgement

(9)新型半导体-金属-异质结的理论模拟与设计(论文提纲范文)

摘要
ABSTRACT
Lists of Nomenclatures
Chapter One: Introduction
    1.1. Research Background
    1.2. Objective of the Research
    1.3. Thesis Structure
Chapter Two: Heterojunction Photocatalysis
    2.1. Introduction
    2.2. Heterojunction Design
        2.2.1. p-type-n-type (p-n) junction photocatalysis
        2.2.2. n-n (n-type-p-type) semiconductor junctions
        2.2.3. Semiconductor-Metal (s-m) heterojunctions
        2.2.4. Z-scheme ternary heterojunctions
    2.3. Semiconductor-Graphene Heterojunction
    2.4. Semiconductor(S)-Graphitic Carbon Nitride (C_3N_4) Heterojunction
Chapter Three: Theoretical Method
    3.1. Electronic structure computation
    3.2. VASP
    3.3. Density Functional Theory(DFT)
        3.3.1. Successes and failures of DFT
        3.3.2. LDA accuracy and gradient correlated functionals
    3.4. LDA+U approximation method
Chapter Four: Energy-Dependent Z-Scheme design ofp-Semiconductor-Metal-n-Semiconductor Heterojunction
    4.1. Introduction
    4.2. Computational Methodology
    4.3. Result and Discussion
    4.4. Conclusion
Chapter Five: Energy-Dependent Z-Scheme design ofn-Semiconductor-Metal-p-Semiconductor Heterojunction
    5.1. Introduction
    5.2. Methodology
    5.3. Result and Discussion
    5.4. Conclusion
Chapter Six: Summary and Outlook
    6.1. Summary
    6.2. Outlooks
References
Acknowledgements
Publications
APPENDIX

(10)污泥生物炭基催化剂的制备及其对水中有机污染物的氧化降解机理研究(论文提纲范文)

ABSTRACT
摘要
Chapter 1-Introduction
    1.1. General introduction and historical background
    1.2. Conventional sludge disposal methods and limitations
    1.3. Scope of sludge biochar as catalysts
    1.4. Synthesis routes and characteristics of sludge biochar
        1.4.1. Pyrolysis method
        1.4.2. Microwave digestion method
        1.4.3. Hydrothermal carbonization method
    1.5. Environmental Application of sludge biochar as catalysts
        1.5.1. Oxidative degradation of organic pollutants
        1.5.2. Employed as Microbial Fuel Cell electrode materials
    1.6. Knowledge gaps and outlook
    1.7. Overall objectives of the study
Chapter 2-Catalysts'characterization methods
    2.1. Morphology analysis
    2.2. Crystallinity analysis
    2.3. Surface textural properties analysis
    2.4. Chemical composition analysis
    2.5. Optical sensitivity analysis
    2.6. Magnetic properties analysis
    2.7. Thermal stability analysis
    2.8. Carbon defects analysis
    2.9. Electron paramagnetic resonance analysis
    2.10 adsorption capacity measurement
    2.11. Summary
Chapter 3-Sewage sludge-derived TiO_2/Fe/Fe_3C-biochar compositeas heterogeneous Fenton-like catalyst for degradation of methyleneblue
    3.1. Introduction
    3.2. Experimental section
        3.2.1. Materials and chemicals
        3.2.2. Preparation of sludge-derived TiO_2/Fe/Fe_3C-biochar composite
        3.2.3. Experiments for Fenton-like reaction
    3.3. Results and discussion
        3.3.1. Influence of Ti/Fe integration on sludge biochar properties
        3.3.2. Performance of catalysts in fenton-like reaction
        3.3.3. Mechanisms of Fenton-like reactions and subsequent degradation of MB
    3.4. Summary
Chapter 4-Sludge-derived MnOx-N-biochar as an efficient catalystfor peroxymonosulfate activation
    4.1. Introduction
    4.2. Experimental section
        4.2.1. Raw material
        4.2.2. Preparation of sludge-derived MnOx-N-biochar
        4.2.3. Experiments for Peroxymonosulfate activation
    4.3. Results and discussion
        4.3.1. Influence of Mn integration and NH4OH treatment on sludge biochar properties
        4.3.2. Performance of catalyst in activating PMS and oxidative degradation of pollutants
        4.3.3. Mechanisms of PMS activation and degradation of AO7
    4.4. Summary
Chapter 5-Effects of chemical treatment on peroxymonosulfateactivation efficiency of sludge biochar-based catalysts: UnderstandingUnderstanding the active sites and mechanisms
    5.1. Introduction
    5.2. Experimental section
        5.2.1. Collection and preparation of materials
        5.2.2. Preparation of chemically modified SBCs
        5.2.3. Experiments for Peroxymonosulfate activation
    5.3. Results and discussion
        5.3.1. Influence of thermal and chemical treatment on sludge biochar properties
        5.3.2. Performance of catalyst in activating PMS and oxidative degradation of organics
        5.3.3. Identifying catalytically active sites and their roles in oxidation
        5.3.4. Reproducibility analysis
    5.4. Summary
Chapter 6-Sewage sludge and Melamine-blended biochar as a robustrobust heterogeneous catalyst for peroxymonosulfate activation:enhancement of N-functionality and catalytic mechanisms
    6.1. Introduction
    6.2. Experimental section
        6.2.1. Chemicals and materials
        6.2.2. Preparation of sludge and Melamine-blended biochar
        6.2.3. Experiments for Peroxymonosulfate activation
    6.3. Results and discussion
        6.3.1. Influence of melamine integration on sludge biochar physiochemical properties
        6.3.2. Catalytic performance of the biochar as a PMS activator
        6.3.3. Comparison of catalytic Performance
        6.3.4. Mechanisms of PMS activation and subsequent degradation of RB
    6.4. Summary
Chapter 7-Major Conclusions and Innovations
    7.1. Major Conclusions
        7.1.1. Sewage sludge-derived TiO_2/Fe/Fe_3C-biochar composite as heterogeneousFenton-like catalyst for degradation of methylene blue
        7.1.2. Sludge-derived MnOx-N-biochar as an efficient catalyst for peroxymonosulfateactivation
        7.1.3. Effects of chemical treatment on peroxymonosulfate activation efficiency ofsludge biochar-based catalysts
        7.1.4. Sewage sludge and Melamine-blended biochar as a robust heterogeneous catalystfor peroxymonosulfate activation
    7.2. Innovations
References
Appendix
    List of acronym
    List of figures
    List of tables
Acknowledgements
The applicant profile
    1. The main research project during the Ph.D. degree
    2. Awards during Doctoral degree
    3. Conferences Attended
    4. Research publications

四、Photocatalytic reaction kinetics model based on electrical double layer theoryⅡ. Infrared spectroscopic characterization of methyl orange adsorption on TiO_2 surface(论文参考文献)

  • [1]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
  • [2]Di erences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges[J]. Weiqi Qian,Suwen Xu,Xiaoming Zhang,Chuanbo Li,Weiyou Yang,Chris R.Bowen,Ya Yang. Nano-Micro Letters, 2021(10)
  • [3]可见光响应光电阳极的设计合成及其光电催化水分解性能研究[D]. 王海梅. 山东大学, 2021(11)
  • [4]氧化钴/碳基材料析氧电催化剂的设计和可控合成[D]. Sumbal Farid. 大连理工大学, 2020(01)
  • [5]生物炭基材料对水溶液中环丙沙星的去除效能及机制解析[D]. Muhammad Zaheer Afzal. 山东大学, 2020(12)
  • [6]实现选择脱除硫化氢与高效提取锂离子的印迹技术研究[D]. 黄岩. 山东大学, 2020(12)
  • [7]类囊体启发光驱动NADH再生系统构建及性能强化[D]. 伍一洲. 天津大学, 2020
  • [8]斜发沸石负载TiO2用于水中有机染料的高效光催化降解[D]. Raza Ullah. 北京工业大学, 2020
  • [9]新型半导体-金属-异质结的理论模拟与设计[D]. Mesfin Atlaw Eshete. 中国科学技术大学, 2020(01)
  • [10]污泥生物炭基催化剂的制备及其对水中有机污染物的氧化降解机理研究[D]. 刘米安(Md Manik Mian). 中国科学技术大学, 2020(01)

标签:;  ;  ;  ;  

基于双电层理论的光催化反应动力学模型Ⅱ. TiO_2表面甲基橙吸附的红外光谱表征
下载Doc文档

猜你喜欢